试题详情
解答题-作图题 适中0.65 引用0 组卷1162
南北朝时期的伟大科学家祖暅,于五世纪末提出了体积计算原理,即祖暅原理:“夫叠棋成立积,缘幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么,这两个几何体的体积相等.其最著名之处是解决了“牟合方盖”的体积问题.如图所示,正方体,棱长为.

(1)求图中四分之一圆柱体的体积;
(2)在图中画出四分之一圆柱体与四分之一圆柱体的一条交线(不要求说明理由);
(3)四分之一圆柱体与四分之一圆柱体公共部分是八分之一个“牟合方盖”.点在棱上,设.过点作一个与正方体底面平行的平面,求该截面位于八分之一“牟合方盖”内部分的面积;
(4)如果令,求出八分之一“牟合方盖”的体积.
知识点:圆柱的结构特征辨析柱体体积的有关计算锥体体积的有关计算空间中的点共线问题 答案解析 【答案】很抱歉,登录后才可免费查看答案和解析!
类题推荐

组卷网是一个信息分享及获取的平台,不能确保所有知识产权权属清晰,如您发现相关试题侵犯您的合法权益,请联系组卷网