解答题-问答题 较易0.85 引用2 组卷337
现代信息技术给我们的生活带来了革命性的变化,手机已成为人们生活中的必备品,但使用手机上网玩游戏已成为一个严重的社会问题,特别是在校学生过度玩手机,已严重影响了其身心和学业的发展,某校为了解学生使用手机的情况,随机调查了100名学生,对他们每天使用手机上网的时间进行了统计分析,得到如下的统计表:
(1)以样本估计总体,在该校中任取一名学生,则该生使用手机上网时间不低于1小时的概率约是多少?
(2)对样本中使用手机上网时间不低于1.5小时的学生,采用分层抽样的方法抽取人,再在这人中随机抽取人,求抽取的人使用手机上网时间均低于小时的概率;
(3)进一步的统计分析发现,在使用手机上网低于1小时的学生中,综合素质考核为“优”的有人,在使用手机上网不低于1小时的学生中,综合素质考核为“优”的有人,问:能否在犯错误的概率不超过的前提下,认为综合素质考核为“优”与使用手机上网时间有关?
附,,
时间 | ||||||
人数 | 20 | 25 | 25 | 15 | 10 | 5 |
(2)对样本中使用手机上网时间不低于1.5小时的学生,采用分层抽样的方法抽取人,再在这人中随机抽取人,求抽取的人使用手机上网时间均低于小时的概率;
(3)进一步的统计分析发现,在使用手机上网低于1小时的学生中,综合素质考核为“优”的有人,在使用手机上网不低于1小时的学生中,综合素质考核为“优”的有人,问:能否在犯错误的概率不超过的前提下,认为综合素质考核为“优”与使用手机上网时间有关?
附,,
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
20-21高三下·河南商丘·阶段练习
类题推荐
为了调查某大学学生在周日上网的时间,随机对名男生和名女生进行了不记名的问卷调查,得到了如下的统计结果:
表1:男生上网时间与频数分布表:
表2:女生上网时间与频数分布表:
(1)若该大学共有女生人,试估计其中上网时间不少于分钟的人数;
(2)完成表3的列联表,并回答能否有的把握认为“学生周日上网时间与性别有关”?
(3)从表3的男生中“上网时间少于分钟”和“上网时间不少于分钟”的人数中用分层抽样的方法抽取一个容量为的样本,再从中任取两人,求至少有一人上网时间超过分钟的概率.表3:
附:,其中,
表1:男生上网时间与频数分布表:
上网时间(分钟) | |||||
人数 | 5 | 25 | 30 | 25 | 15 |
上网时间(分钟) | |||||
人数 | 10 | 20 | 40 | 20 | 10 |
(2)完成表3的列联表,并回答能否有的把握认为“学生周日上网时间与性别有关”?
(3)从表3的男生中“上网时间少于分钟”和“上网时间不少于分钟”的人数中用分层抽样的方法抽取一个容量为的样本,再从中任取两人,求至少有一人上网时间超过分钟的概率.表3:
上网时间少于60分钟 | 上网时间不少于60分钟 | 合计 | |
男生 | |||
女生 | |||
合计 |
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
对某校900名学生每周的运动时间进行调查,其中有男生540名,女生360名,根据性别利用分层抽样的方法,从这900名学生中选取60名学生进行分析,统计数据如下表(运动时间单位:小时)
男生运动时间统计:
女生运动时间统计:
(1)计算,的值;若每周运动时间不低于6小时的同学称为“运动爱好者”,每周运动时间低于6小时的同学称为“非运动爱好者”,根据以上统计数据填写下面的列联表,则是否可以认为在犯错误的概率不超过的前提下认为“运动爱好者与性别有关”?
附:,
(2)在抽取的60名学生样本中,从每周运动时间在的同学中任取3人,记抽到的男生人数为随机变量,求的分布列和数学期望.
男生运动时间统计:
运动时间(小时) | |||||
人数 | 9 | 8 | 12 | 4 |
运动时间(小时) | |||||
人数 | 10 | 5 | 2 | 1 |
男生 | 女生 | 合计 | |
运动爱好者 | |||
非运动爱好者 | |||
合计 |
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
国内某大学有男生6000人,女生4000人,该校想了解本校学生的运动状况,根据性别采取分层抽样的方法从全校学生中抽取100人,调查他们平均每天运动的时间(单位:小时),统计表明该校学生平均每天运动的时间范围是,若规定平均每天运动的时间不少于2小时的学生为“运动达人”,低于2小时的学生为“非运动达人”.根据调查的数据按性别与“是否为‘运动达人’”进行统计,得到如下2×2列联表:
(1)请根据题目信息,将2×2列联表中的数据补充完整,并通过计算判断能否在犯错误概率不超过0.025的前提下认为性别与“是否为‘运动达人’”有关;
(2)将此样本的频率估计为总体的概率,随机调查该校的3名男生,设调查的3人中运动达人的人数为随机变量X,求X的分布列和数学期望及方差.
附表及公式:
,其中.
运动时间 性别 | 运动达人 | 非运动达人 | 合计 |
男生 | 36 | ||
女生 | 26 | ||
合计 | 100 |
(2)将此样本的频率估计为总体的概率,随机调查该校的3名男生,设调查的3人中运动达人的人数为随机变量X,求X的分布列和数学期望及方差.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
组卷网是一个信息分享及获取的平台,不能确保所有知识产权权属清晰,如您发现相关试题侵犯您的合法权益,请联系组卷网